## Preprint

### Journal Article

[BFPS2024a]
Jumps and cusps: a new revival effect in local dispersive PDEs,
(submitted) 2024
arXiv:2403.01117 [math.AP]

[PS2024a]
Revivals, or the Talbot effect, for the Airy equation,
Stud. Appl. Math. (to appear 2024),
arXiv:2402.03133 [math.AP]

## Published

### Journal Article

[NS2024a]
The Airy equation with nonlocal conditions,
Stud. Appl. Math. 152 2 (2024), 543–567,
arXiv:2306.11273 [math.AP]

[FPS2022a]
Time-periodic linear boundary value problems on a finite interval,
Quart. Appl. Math. 80 3 (2022) 481–506
arXiv:2109.00834 [math.AP]

[ST2022a]
Linear evolution equations on the half line with dynamic boundary conditions,
Eur. J. Appl. Math. 33 3 (2022) 505–537
arXiv:1910.08764 [math.AP]

[ABS2022a]
Fokas diagonalization of piecewise constant coefficient linear differential operators on finite intervals and networks,
Acta. Appl. Math. 177 2 (2022), 1–69,
arXiv:2012.05638 [math.SP]

[BOPS2021a]
New revival phenomena for linear integro-differential equations,
Stud. Appl. Math. 174 4 (2021), 1209–1239,
arXiv:2010.01320 [math.AP]

[OSS2020a]
Revivals and fractalisation in the linear free space Schrödinger equation,
Quart. Appl. Math. 78 2 (2020), 161–192,
arXiv:1812.08637 [math.PH]

[MS2018a]
The diffusion equation with nonlocal data,
J. Math. Anal. Appl. 466 2 (2018), 1119–1143,
arXiv:1708.00972 [math.AP]

[PS2018a]
Nonlocal and multipoint boundary value problems for linear evolution equations,
Stud. Appl. Math. 141 1 (2018), 46–88,
arXiv:1511.07244 [math.AP]

[KPPS2018a]
A numerical implementation of the unified Fokas transform for evolution problems on a finite interval,
Euro. J. Appl. Math. 29 3 (2018), 543–567,
arXiv:1610.04509 [math.NA]

[DSS2016a]
The Linear KdV Equation with an Interface,
Comm. Math. Phys. 347 2 (2016), 489–509,
arXiv:1508.03596 [math.AP]

[FS2016a]
Evolution PDEs and augmented eigenfunctions. Finite interval,
Adv. Diff. Eq. 21 7/8 (2016), 735–766,
arXiv:1303.2205 [math.SP]

[PS2016a]
Evolution PDEs and augmented eigenfunctions. Half line,
J. Spectr. Theory 6 1 (2016), 185–213,
arXiv:1408.3657 [math.AP]

[SS2015a]
Heat equation on a network using the Fokas method,
J. Phys. A 48 33 (2015), 335001,
arXiv:1503.05228 [math.AP]

[PS2013a]
Spectral theory of some non-selfadjoint linear differential operators,
Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 469 2154 (2013), 20130019,
arXiv:1205.4567 [math.SP]

[Smi2012a]
Well-posed two-point initial-boundary value problems with arbitrary boundary conditions,
Math. Proc. Cambridge Philos. Soc. 152 3 (2012), 473–496,
arXiv:1104.5571v2 [math.AP]

### Peer reviewed book chapter

[PS2023a]
The role of periodicity in the solution of third order boundary value problems,
Chaos, Fractals and Complexity, Ed: T. Bountis, F. Vallianatos, A. Provata, D. Kugiumtzis, and Y. Kominis, Springer (2023), 333–345
arXiv:2212.03149 [math.AP]

[Smi2023a]
Fokas diagonalization,
Chaos, Fractals and Complexity, Ed: T. Bountis, F. Vallianatos, A. Provata, D. Kugiumtzis, and Y. Kominis, Springer (2023), 301–318
arXiv:2211.10392 [math.SP]

[Smi2015a]
The unified transform method for linear initial-boundary value problems: a spectral interpretation,
Unified transform method for boundary value problems: applications and advances, Ed: A. S. Fokas and B. Pelloni, SIAM (2015), 34–47
arXiv:1408.3659 [math.SP]

### Magazine article

### PhD thesis

[Smi2011a]
Spectral theory of ordinary and partial linear differential operators on finite intervals,
PhD Thesis, University of Reading, 2011,