## Preprint

### Journal Article

[FPS2021a]
Time-periodic linear boundary value problems on a finite interval,
(submitted) 2021
arXiv:2109.00834 [math.AP]

## Published

### Journal Article

[ST2019a]
Linear evolution equations on the half line with dynamic boundary conditions,
Eur. J. Appl. Math. (to appear 2021)
arXiv:1910.08764 [math.AP]

[ABS2022a]
Fokas diagonalization of piecewise constant coefficient linear differential operators on finite intervals and networks,
Acta. Appl. Math. 177 2 (2022), 1--69,
arXiv:2012.05638 [math.SP]

[BOPS2021a]
New revival phenomena for linear integro-differential equations,
Stud. Appl. Math. 174 4 (2021), 1209-1239,
arXiv:2010.01320 [math.AP]

[OSS2020a]
Revivals and fractalisation in the linear free space Schrödinger equation,
Quart. Appl. Math. 78 2 (2020), 161-192,
arXiv:1812.08637 [math.PH]

[MS2018a]
The diffusion equation with nonlocal data,
J. Math. Anal. Appl. 466 2 (2018), 1119-1143,
arXiv:1708.00972 [math.AP]

[PS2018a]
Nonlocal and multipoint boundary value problems for linear evolution equations,
Stud. Appl. Math. 141 1 (2018), 46-88,
arXiv:1511.07244 [math.AP]

[KPPS2018a]
A numerical implementation of the unified Fokas transform for evolution problems on a finite interval,
Euro. J. Appl. Math. 29 3 (2018), 543-567,
arXiv:1610.04509 [math.NA]

[DSS2016a]
The Linear KdV Equation with an Interface,
Comm. Math. Phys. 347 2 (2016), 489-509,
arXiv:1508.03596 [math.AP]

[FS2016a]
Evolution PDEs and augmented eigenfunctions. Finite interval,
Adv. Diff. Eq. 21 7/8 (2016), 735-766,
arXiv:1303.2205 [math.SP]

[PS2016a]
Evolution PDEs and augmented eigenfunctions. Half line,
J. Spectr. Theory 6 1 (2016), 185-213,
arXiv:1408.3657 [math.AP]

[SS2015a]
Heat equation on a network using the Fokas method,
J. Phys. A 48 33 (2015), 335001,
arXiv:1503.05228 [math.AP]

[PS2013a]
Spectral theory of some non-selfadjoint linear differential operators,
Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 469 2154 (2013), 20130019,
arXiv:1205.4567 [math.SP]

[Smi2012a]
Well-posed two-point initial-boundary value problems with arbitrary boundary conditions,
Math. Proc. Cambridge Philos. Soc. 152 3 (2012), 473-496,
arXiv:1104.5571v2 [math.AP]

### Peer reviewed book chapter

[Smi2015a]
The unified transform method for linear initial-boundary value problems: a spectral interpretation,
Unified transform method for boundary value problems: applications and advances, Ed: A. S. Fokas and B. Pelloni, SIAM (2015),
arXiv:1408.3659 [math.SP]

### Magazine article

### PhD thesis

[Smi2011a]
Spectral theory of ordinary and partial linear differential operators on finite intervals,
PhD Thesis, University of Reading, 2011,